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ABSTRACT
There is a lot of prior work that deals with dynamic resource management, to efficiently utilize elasticity of clouds, since over-
provisioning leads to resource wastage and extra monetary cost, while under-provisioning causes performance degradation
and violation of service-level agreement (SLA). These works can be classified into predictive, reactive, and mixed approaches.
While these approaches can handle gradual changes in load, they cannot handle abrupt changes, especially traffic surge
that occur almost instantaneously, like Slashdot effect.Unfortunately, such traffic variations are generally unplanned, of great
amplitude, within a very short period, and a variable delay to return to a normal regime. In this paper, we introduce
PeakForecast1(PF) to deal that issue. PF is an elastic distributed resource scaling approach for IaaS cloud infrastructures
that provide a medium-term resource demand prediction. PF can efficiently scale cloud resources up and down to absorb
such traffic surges. We describe our resource allocation algorithm (PF algorithm) based on simple exponential smoothing
(SES) prediction method and MAPE-K (Monitoring, Analysis, Planning, and Execution) loop, which auto-scaling resources
by allocates or deallocates resources based on traffic of user requests. We also present the design and implementation of a
prototype elastic middleware solution, based on PF. We validate our approach by experimental results by demonstrating that,
our prototype can provide spontaneous elasticity of resources for traffic surges observed on the Japanese version of Wikipedia
during the Fukushima Daiichi nuclear disaster in March 2011 and a dataset acquired from the FIFA 1998 World Cup web site.
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1. INTRODUCTION
Elastic resource provisioning is a key feature of cloud computing, allowing users to scale up or down resource allocation for

their applications at run-time. To date, most practical approaches to managing elasticity are based on allocation/de-allocation
of the virtual machine (VM) instances to the application. This VM-level elasticity typically incurs both considerable overhead
and extra costs, especially for applications with rapidly fluctuating demands [44].

Unfortunately, abrupt changes in load, or traffic surge, are all too common in today’s data centers. Important events [3],
such as the September 11 attacks [45, 46], earthquakes or other natural disasters [47], Slashdot effects [48], Black Friday
shopping [49], or sporting events, such as the Super Bowl [50] or the Soccer World Cup [51], are common causes of load
spikes for website traffic. Service outages [52] or server failures [53] can also result in abrupt changes in load caused by a
sharp drop in capacity. While some of the above events are predictable, most of them cannot be predicted in advance, like
the Slashdot effect, occur when a distributed system is overloaded by a huge number of requests, potentially leading to its

1https://github.com/Spirals-Team/peak-forecast

.



unavailability. There is a lot of prior work that deals with dynamic resource management [3], to efficiently utilize elasticity
of clouds. These works can be classified into predictive [28, 33, 24, 23, 7, 8], reactive [44, 3, 4, 5, 6] and mixed [54, 55, 56,
57, 11, 10, 9] approaches. While these approaches can handle gradual changes in load, they cannot handle abrupt changes,
especially traffic surge that occur almost instantaneously [3]. In this context, it is legitimate to raise the following research
questions: Is it possible to anticipate the effects of a traffic surge before under-provisioning resources? If so, is it possible to
protect the targeted system from unavailability?

Figure 1: Overall architecture of PeakForecast

In this paper, to address this challenge, we propose an elastic distributed resource scaling approach for IaaS cloud infrastruc-
tures, named PeakForecast (PF). PF provide a medium-term resource demand prediction to absorb traffic surges before
under-provisioning, Figure 1 shows its overall architecture.

Our mix approach consists, from a trace of queries received in the last seconds, minutes or hours: i) Detecting Poten-
tial Traffic Surges, ii) After detecting the traffic surge, forecasting the Upcoming Traffic by using a forecasting model, iii)
Estimating the number resources required to absorb the remaining traffic to come, iv) Auto-scaling resources by quickly au-
tomatically adding resources to absorb traffic surges. This approach offers benefits for multi-tier applications that are already
implemented using multiple VMs by improving the resource utilization between them as application demands vary.

We make the following contributions in this paper:

• We describe PeakForecast (PF), an elastic distributed resource scaling approach for IaaS cloud infrastructures that
provide a medium-term resource demand prediction to absorb traffic surges before under-provisioning. Figure 1 shows
its generic architecture. PF can efficiently scale cloud resources up and down to absorb such traffic surges.

• We describe a series of experiments that test the simple exponential smoothing (SES) prediction method that we use
and compare predicted traffic with actual traffic and a set of alternative prediction algorithms, using a traffic surge that
occurred on the Japanese version of Wikipedia the minutes before and after the tsunami on March 11th, 2011. The
evaluation results demonstrate that SES is effective.

• We describe our resource allocation algorithm (PF algorithm).

• We design and implementation of a prototype elastic middleware solution, based on PF. We validate our approach by
experimental results, by demonstrating that our prototype elastic middleware solution can provide spontaneous elasticity
of resources for traffic surges in IaaS cloud infrastructures.



The generic architecture of PF based on the Service Component Architecture (SCA) standard, our resource allocation algo-
rithm (PF algorithm) based on simple exponential smoothing (SES) prediction method and MAPE-K (Monitoring, Analysis,
Planning, and Execution) loop, which auto-scaling resources by allocates or deallocates resources based on traffic of user
requests.

The remainder of this paper is organized as follows. We discuss related works (cf. Section 2) in this domain. We introduce
a case study highlighting the limitations of the state of the art (cf. Section 3) that we use to present our approach PF, we
present the overall architecture of PF by describing its key components (cf. Section 4) and before validating our prototype
elastic middleware solution by reporting on experimental results (cf. Section 5). Finally concluding (cf. Section 6).

2. RELATED WORKS
For a comprehensive study regarding the state of the art of elasticity in the cloud, We highlight the most prominent elasticity

related solutions regarding (1) reactive approaches, (2) predictive approaches, and (3) mixed approaches. For a more detail
review, refer to [62, 61, 58, 59, 60].

Reactive approaches such as threshold-based rules or policies are the most popular technique for automatic scaling in
cloud computing (commercial systems such as provided by Amazon Web Services (AWS) [21], RightScale [22], Microsoft
[36]), presumaly because of their apparent simplicity. The Amazon Web Services (AWS) [21] cloud platform offers static
threshold scaling through specific metrics such as the CPU utilization. Amazon then monitors these metrics and scales when
the set threshold rules are breached. Amazon offers a few different techniques on how the scale performs such as a fixed
change, adding/negating from the current machine count or using a percentage change for the machines. Microsoft Azure [36]
offering of static threshold-based rules runs the choice of two metrics, CPU utilization and the number of work tasks in the
message queue [41]. RightScale offer the same core use of static threshold-based rules as the other two providers mentioned.
RightScale have extended static threshold-based rules with RightScale’s auto-scaling algorithm [37]. It is a simple democratic
voting process whereby, if a majority of the VMs agree that they should scale up or down, that action is taken; otherwise
no action occurs. Each VM votes to scale up or down based on a set of rules. After each scaling action, there is a period
called the resize calm time (equivalent to the inertia or cooldown time), where no action can be performed. It prevents the
algorithm from continually allocating resources as new instances boot [38]. As RightScale’s voting system is based on rules,it
has the same disadvantage [38]: the algorithm is highly dependent on user-defined threshold values, and therefore, to the
workload characteristics. This was the conclusion reached by Kupferman et al. [39] after comparing RightScale with other
algorithms. Static threshold-based rules presented the most simple and intuitive approach for auto scaling. However, setting
the appropriate thresholds is a very tricky task, and can lead to instability in the system. Moreover, static thresholds become
invalid if the behavior of the application changes suddenly during peak traffic. Setting the correct threshold also presents a
challenge as this is done manually which requires knowledge of the application. If the threshold is wrong there is the risk of
oscillation in the scaling, underutilization of resources or over utilization [40].

Predictive approaches use heuristics and analytical techniques together with historical data to predict future demand and
proactively allocate resources. A number of different methods are used in the workload prediction. In [23], it develops a
model-predictive algorithm for the workload prediction in which a second order autoregressive moving average method filter
is used. PRESS [24] developed a hybrid online resource demand prediction model that combines a Markov model and a
fast Fourier transform-based technique. Previous prediction schemes either focus on short-term prediction or need to assume
cyclic workload patterns. Gmach et al. [25] used a Fourier transformbased scheme to perform offline extraction of long-term
cyclic workload patterns. In comparison, Peakforecast does not assume the workload is cyclic, and can predict resource
demands for arbitrary workload patterns. Chen et al. [26] used sparse periodic auto-regression to perform load prediction.
However, their approach is tailored towards long prediction intervals (e.g.,hours) and assumes that the repeating period is
known in advance [24]. The experiments [24] have shown that auto-regression is computationally intensive, which makes
it impractical for short-term online VM resource scaling. Saripalli et al. [27] use a two-step approach, using cubic spline
interpolation combined with a hotspot detection algorithm for sudden spikes. Predicted values depend on the window width
chosen. Hence, large amounts of available data are needed to produce confident predictions [28].

Mixed approaches. Mixed or Hybrid approaches combine reactive and predictive approaches to determine when to acquire
resources over short and long time scales respectively (e.g., [54] ). In this category, some approaches use predictive techniques
for releasing resources and reactive techniques for acquiring resources(e.g., [55, 56]). Laura R. et al [55] presented a Platform
Insights is a hybrid elasticity controller employing both reactive rule-based and predictive model-based elasticity mechanisms
together in a coordinated manner. However, Platform Insights not handle multiple QoS objectives at once and not incorporate
an algorithm to detect change in workload mix. In comparison, Peakforecast detects change in workload mix. From a
trace of requests received in the last seconds, minutes or hours, PeakForecast detects if the underlying system is facing a
traffic surge or not

Previous work has applied control theory [29], [30], [31] or reinforcement learning [32] to adaptively adjust resource
allocations based on service level objectives (SLO) conformance feedback. However, those approaches often have parameters
that need to be speciffed or tuned offine, and need some time to converge to the optimal(near-optimal) [24]. In comparison,
PeaFforecast directly predicts resource allocation based on historical request time series.

Huber et al. [35] presented a self-adaptive resource management algorithm which leverages workload prediction and
a performance model [34] that predicts application’s performance under different configurations and workloads [33]. In
comparison, PeakForecast does not require any prior application knowledge.

Vertical vs. Horizontal scaling. In practice [61], existing solutions for auto-scaling enable horizontal scaling, i.e., acquiring
or realizing node instances, while vertical scaling, i.e., increasing computing power of node instances, is not considered. It



has been attributed to impossibility of changing the size of nodes at the hypervisors level [62] [63]. SmartScale [57]
proposed an auto-scaling method that minimized resource usage costs for bag-of-tasks jobs. It used horizontal scaling which
added or removed VMs and vertical scaling which expanded or reduced the size of a VM. However, it is still deficient for
resource requirements of dynamic workloads because it lacks consideration of resource usage during execution of an application.
PeakForecast enables horizontal scaling.

It should be noted that the predictive models and the various theories mentioned above are mainly reserved for the scientific
world. Indeed, industrial solutions prefer a reactive approach based on threshold-based rules. This is due to the fact that this
type of solution is simpler to implement and more easily understandable by a non-scientific community that is struggling to
apprehend theories that are too far from the industrial world. The main disadvantage of reactive techniques is that they do
not anticipate unexpected changes in workload, and therefore, resources can not be provided in advance.

In order to handle traffic surges, the authors advocate either having spare servers that are always available (i.e., over-
provisioning), or finding a way to lower setup times. This is the case in [3], which considers that the architecture of the
datacenter includes a caching tier consisting of machines that are always available. They temporarily use the resources of
these machines to process requests as long as new servers are being deployed in the application tier. The elastic part is limited
to the application tier, which is the largest consumer of CPU resources. When the load is high, [3] needs to be coupled with
techniques like those in [13, 14, 15, 16] to minimize the damage caused by load spikes. However, by using PeakForecast, we
do not have to pay for any additional resources, which is not the case when over-provisioning via spare servers. Furthermore,
we used mixed approaches (reactive and predictive), which allows us to manage traffic surges in less than 60 seconds for case
of VMs or in less than 10 seconds for case of Containers, in order to respond with the best reactivity as possible to user
demands and maintaining the quality of service online site continuously.

There is also work, such as [17, 18], which addresses elastic control for multi-tier application services that allocate and
release resources in discrete units, such as virtual server instances of pre-determined sizes. It focuses on an elastic control of
the storage tier, in which adding or removing a storage node or brick requires rebalancing stored data across the nodes, and
are not the focus of our paper.

Table 1: Summary of the PeakForcast comparison with existing works
References Approaches Method Scaling Limitations

Reactive Predictive Vertical horizontal

[21](2017) x x

Reactive approaches presented the most simple and intuitive
approach for auto scaling. However, setting the appropriate
thresholds is a very tricky task, and can lead to instability
in the system. Moreover, static thresholds become invalid if
the behavior of the application changes suddenly during peak
traffic.

[22, 37](2017) x x
[36](2017) x x

[23](2011) x x

Previous prediction schemes either focus on short-term predic-
tion or need to assume cyclic workload patterns. In compari-
son, PeakForecast does not assume the workload is cyclic, and
can predict resource demands for arbitrary workload patterns

[24](2010) x x
Their approach is tailored towards long prediction intervals
(e.g, hours) and assumes that the repeating period is known in
advance.

[27](2011) x x
Predicted values depend on the window width chosen. Hence,
large amounts of available data are needed to produce condent
predictions.

[29, 30, 31](2009) x x

Those approaches often have parameters that need to be spec-
ified or tuned offine, and need some time to converge to the
optimal(near-optimal) decisions. In comparison, PeakForecast
directly predicts resource allocation based on historical request
time series

[33](2013) x x

Presented a self-adaptive resource management algorithm
which leverages workload prediction and a performance model
that predicts application’s performance under different config-
urations and workloads. In contrast, PeakForecast does not
require any prior application knowledge.

[55](2013) x x x

Platform Insights not handle multiple QoS objectives at once
and not incorporate an algorithm to detect change in workload
mix.In comparison,Peakforecast detects change in workload
mix.

[57](2013) x x x x
it is still deficient for resource requirements of dynamic work-
loads because it lacks consideration of resource usage during
execution of an application.



2.1 Our Contributions
We make the following contributions :

• We describe PeakForecast (PF), an elastic distributed resource scaling approach for IaaS cloud infrastructures that
provide a medium-term resource demand prediction to absorb traffic surges before under-provisioning. Figure 1 shows
its generic architecture. PF can efficiently scale cloud resources up and down to absorb such traffic surges.

• We describe a series of experiments that test the simple exponential smoothing (SES) prediction method that we use
and compare predicted traffic with actual traffic and a set of alternative prediction algorithms, using a traffic surge that
occurred on the Japanese version of Wikipedia the minutes before and after the tsunami on March 11th, 2011. The
evaluation results demonstrate that SES is effective.

• We describe our resource allocation algorithm (PF algorithm).

• We design and implementation of a prototype elastic middleware solution, based on PF. We validate our approach by
experimental results, by demonstrating that our prototype elastic middleware solution can provide spontaneous elasticity
of resources for traffic surges in IaaS cloud infrastructures.

The generic architecture of PF based on the Service Component Architecture (SCA) standard, our resource allocation algo-
rithm (PF algorithm) based on simple exponential smoothing (SES) prediction method and MAPE-K (Monitoring, Analysis,
Planning, and Execution) loop, which auto-scaling resources by allocates or deallocates resources based on traffic of user
requests.

3. OUR APPROACH
In this section, we illustrate our approach on a case study that consists in absorbing a traffic surge that occurred on the

Japanese version of Wikipedia the minutes before and after the tsunami on March 11th 2011.

3.1 Detecting Potential Traffic Surges
In Figure 2, we can observe that, between 12:49 and 12:50, a traffic surge suddenly occurred because people constantly

reported and consulted live information related to the disaster. One can observe that the intensity and the duration of such a
surge are extreme compared to more traditional traffic loads. In particular, the short duration of this event makes it difficult
to apply standard provisioning and deployment approaches to adjust the resources reactively. For example, threshold-based
techniques cannot keep the pace with such a situation as the amplitude of the surge may lead to inappropriate decisions.

The intensity of such a traffic surge depends on a coefficient Cs that can be defined as:

Cs =
Number of requests at Pn

Number of requests at Pn−1

The highest Cs, the more intense the traffic surge. Figure 3 illustrates the evolution of Cs between 12:28 and 13:22 on
March 11th, and detecting a surge suspicion around 12:49.
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3.2 Forecasting the Upcoming Traffic
After detecting the traffic surge, we need to predict the traffic to be absorbed in the upcoming seconds. We need a method

which can adjust its model quickly according to the variation trend of traffic. As a result of these, in this paper, we use a simple
exponential smoothing(SES) prediction method for time series [1] to solve this problem. The simple exponential smoothing
model is one of the most popular forecasting methods. Its principle is to give more importance to recent observations. It
is therefore more reactive than rolling averages or regression models because it takes into account a quickly changing trend.
It applies to time series without trend and seasonality, but with a change of level (abrupt as it is the case with slashdot
effects). The procedure gives heaviest weight to more recent observations and smaller weight to observations in the more
distant past. The simple exponential smoothing provides a short-term prediction at Pn+1. Given an observed time series
defined as y1, y2, ..., yn, the forecasting formula is therefore defined as:

ŷi+1 = α.yi + (1− α).ŷi, 0 < α < 1, i > 0 (1)

Where yi is the actual known series value for time period i, ŷi is the forecast value of the variable Y for time period i,
ŷi+1 is the forecast value for time period i + 1 and α is the smoothing constant. α is the weight assigned to the most recent
observations in the time series. Essentially, the forecasting model is based on the actual value for this period, and the value
forecast for this period, which recursively was estimated from forecasts for previous periods. Equation (1) can therefore be
rewritten as:

ŷi+1 − ŷi = α.(yi − ŷi) (2)

Thus, the accuracy of the forecast value is proportional to the forecasting error, that is:

ei = yi − ŷi (3)

Where residual ei is the forecasting error for time period i. Thus, we choose α minimizing
∑
e2i .

We applied the simple exponential smoothing method on the requests throughput in a time interval enclosing the traffic
surge (cf. Table 2). In Table 2, the first column are the intervals of 30 seconds from 12:46:30 to 12:53:30; for example
#1=[12:46:30 - 12:47:00], #2=[12:47:30 - 12:47:30], #3=[12:47:30 - 12:48: 00]. The second column, the number of requests
received in the time interval. Columns 3 to 5 are the predictions of requests for each of its smoothing constantt values; For
example in the column for α=0.9, at interval #3=[12:47:30 - 12:48:00], the query number is 5, 890, however the value that
was predicted is 5, 830 and the prediction of the next interval is 5, 884. The table 3 are the squared of forecasting error per
interval. Similarly for Table 4 and ??.

Due to the recurring formula of simple exponential smoothing, we must choose a value from which forecasts can be applied.
This value is of little importance if the series is long and in our case (cf. Table 2), we chose the first observation—i.e. the
number of requests for the interval #1 (5, 981). Concerning the choice of the smoothing constant α, which directly affects
the predictions, no direct mathematical method gives its optimum value. For this, it is obviously necessary to rely on data
stored and therefore, in our case, based on requests history. Thus, we have compared three values of α—0.1, 0.4, and 0.9—to
observe their effect on the predictions of our forecasting model.

Period # of Forecast Forecast Forecast
Id requests α=0.4 α=0.1 α=0.9
1 5, 981 5, 981 5, 981 5, 981
2 5, 813 5, 981 5, 981 5, 981
3 5, 890 5, 914 5, 964 5, 830
4 6, 051 5, 904 5, 957 5, 884
5 6, 600 5, 963 5, 966 6, 034
6 12, 056 6, 218 6, 030 6, 543
7 15, 349 8, 553 6, 632 11, 505
8 14, 198 11, 271 7, 504 14, 965
9 13, 674 12, 442 8, 173 14, 275
10 12, 870 12, 935 8, 723 13, 734
11 12, 306 12, 909 9, 138 12, 956
12 12, 851 12, 668 9, 455 12, 371
13 13, 351 12, 741 9, 794 12, 803
14 13, 065 12, 985 10, 150 13, 296
15 13, 017 10, 441 13, 088

Table 2: Traffic predictions per interval of 30 sec-
onds from 12:46:30 to 12:53:30 on March 11th
2011.

# of Residual Residual Residual
Id requests α=0.4 α=0.1 α=0.9
1 5, 981
2 5, 813 28, 224 28, 224 28, 224
3 5, 890 566 5, 505 3, 624
4 6, 051 21, 527 8, 877 27, 896
5 6, 600 405, 810 401, 700 320, 019
6 12, 056 34, 084, 803 36, 317, 716 30, 388, 430
7 15, 349 46, 184, 685 75, 982, 191 14, 778, 312
8 14, 198 8, 564, 747 44, 810, 958 587, 636
9 13, 674 1, 517, 665 30, 257, 578 360, 789
10 12, 870 4204 17, 194, 457 746, 610
11 12, 306 363, 492 10, 035, 958 423, 029
12 12, 851 33, 583 11, 533, 918 230, 361
13 13, 351 372, 045 12, 649, 019 300, 300
14 13, 065 6, 396 8, 496, 592 53, 454∑

e2i 9.15× 107 2.47× 108 4.82× 107

Table 3: Residuals e2i = (yi − ŷi)2 of Table 2.
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Figure 4: Traffic predictions from 12:46:30 to 12:53:30 on March 11th 2011.

From Table 3, we can observe that the smoothing constant minimizing
∑
e2i and provides predictions with an acceptable

precision—i.e., which is very close to reality—is α = 0.9. This can be acknowledged in Figure 4.
With this constant smoothing of 0.9, when we detect a traffic surge at the interval #6 (cf. Table 2), we predict an increase

of 11, 504 requests during the next period. Adding this estimated traffic to previous requests, we obtain a forecast traffic of
23, 560 requests from the 30th second of the minute marking the traffic surge, as shown in Figure 2.

This prediction is close to the peak of real traffic, which reached 27, 405 requests per minute (adding the interval number 6
and 7 of Table 2), with an average of 457 requests per second.

We compare predicted traffic with actual traffic and a set of alternative prediction algorithms. We applied these methods
on the requests throughput in a time interval enclosing the traffic surge (cf. Table 2). The Double Exponential Smooth-
ing(DES) [42] like regular exponential smoothing, except includes a component to pick up trends. The Holt–Winters(HW) [42]
is a direct extension of Holt’s [42] method for trended data that models the seasonal variation in a time-series as either a
multiplicative component, or an additive component. The Moving Average(MA) [42] is a calculation to analyze data points by
creating series of averages of different subsets of the full data set. The Fast Fourier transform algorithms for smoothing(FFS)
[43] is to transform a time series into its Fourier coordinates, then remove part of the higher frequencies, and then transform
the coordinates back to a signal. This new signal is a smoothed series. The Autoregressive Integrated Moving Average(ARIMA)
model [42] is generally referred to as an ARIMA(p,d,q) model where parameters p,d and q are non - negative integers that
refer to the order of the autoregressive, integrated, and moving average parts of the model respectively.

Period # of SES MA Holt-Winters DES ARIMA FFS
Id requests α=0.9 α=0.2 β=0.2 α=0.9 (1,1,1) p =0.3
1 5, 813 5, 918 5, 918 5, 918 5, 918 5, 918 7, 761
2 5, 890 5, 813 6, 088 5, 813 5, 913 5, 833 5, 277
3 6, 051 5, 882 7, 282 5, 831 6, 597 5, 947 5, 281
4 6, 600 6, 034 9, 189 5, 887 6, 257 6, 184 7, 887
5 12, 056 6, 543 10, 850 6, 070 7, 075 7, 440 11, 620
6 15, 349 11, 504 12, 375 7, 547 16, 519 15, 725 14, 431
7 14, 198 14, 964 13, 629 9, 699 18, 925 14, 698 15, 089
8 13, 674 14, 274 13, 679 11, 370 13, 980 13, 816 13, 932
9 12, 870 13, 734 13, 179 12, 695 13, 164 13, 542 12, 448
10 12, 306 12, 956 13, 010 13, 601 12, 121 12, 300 12, 032
11 12, 851 12, 371 12, 888 14, 161 11, 702 12, 379 12, 881
12 13, 351 12, 803 12, 927 14, 665 13, 168 13, 260 13, 867
13 13, 065 13, 296 13, 083 15, 117 13, 825 13, 384 13, 487
14 13, 065 13, 088 13, 160 15, 338 12, 933 12, 791 11, 141

Table 4: Traffic predictions per interval of 30 seconds from 12:46:30 to 12:53:30 on March 11th
2011 with a set of alternative prediction algorithms.



Period # of Residual Residual Residual Residual Residual Residual
Id requests SES MA Holt-Winters DES ARIMA FFS
1 5, 813 11, 025 11, 025 11, 025 11, 025 11, 025 3, 796, 835
2 5, 890 5, 929 39, 402 5, 929 566 3, 204 375, 483
3 6, 051 28, 459 1, 515, 361 48, 189 298, 650 10, 811 592, 394
4 6, 600 320, 208 6, 703, 956 508, 019 117, 320 172, 298 1, 657, 129
5 12, 056 30, 388, 615 1, 452, 507 35, 830, 198 24, 810, 053 21, 302, 714 189, 789
6 15, 349 14, 778, 324 8, 842, 296 60, 869, 053 1, 369, 441 141, 573 841, 907
7 14, 198 587, 635 323, 305 20, 237, 500 22, 352, 622 250, 898 794, 423
8 13, 674 360, 789 29 5, 304, 110 94, 168 20, 412 66, 677
9 12, 870 746, 609 95, 976 30, 452 86, 491 452, 429 177, 928
10 12, 306 423, 028 496, 179 1, 677, 856 33, 947 30 74, 931
11 12, 851 230, 360 1, 413 1, 717, 069 1, 319, 720 222, 275 906
12 13, 351 300, 299 179, 267 1, 729, 210 33, 458 8, 153 267, 244
13 13, 065 53, 453 324 4, 211, 091 578, 976 101, 876 178, 655
14 13, 065 534 9, 088 5, 169, 668 17, 421 74, 794 3, 701, 438

Residuals
∑
e2i =

∑
(yi − ŷi)2 4.82× 107 1.96× 107 1.37× 108 5.11× 107 2.27× 107 1.27× 107

Table 5: Residuals
∑
e2i =

∑
(yi − ŷi)2 of Table 4.

Figure 5: Methods Traffic predictions from 12:46:30 to 12:53:30 on March 11th 2011 with a set of alternative
prediction algorithms.

Experimental results are shown in Figure 5 . We can see that in most situations, the Simple Exponential Smoothing(SES)
outperforms other methods, and has a lowest prediction error. Simple exponential smoothing can adjust its function with the
traffic trend, so it can predict the traffic timely and accurately. By contrast, Double Exponential Smoothing(DES) is higher
than the actual traffic most of the time, Holt-Winters prediction is less sensitive of traffic variations, ARIMA prediction is
always dragging a little behind, Moving Average(MA) prediction is less sensitive of traffic variations. FFS prediction is always
dragging a little behind and is higher than the actual traffic most of the time.



3.3 Estimating the resource requirements
While the duration of a traffic surge cannot be predicted, another key constant to be considered is the time required to

bring a computing resource to be ready to process request.

Case of virtual machines (VMs): This includes the time to provision a virtual appliance, the time to install an application
(e.g., MediaWiki takes 10 seconds on average to install), a server or middleware platform (e.g., MongoDB takes 11
seconds on average to install) on a virtual machine. By taking into account this delay and the maximum throughput
supported by the considered components, we can estimate the number of virtual appliances and application stacks
required to absorb the traffic surge along the upcoming period. In particular, we use the following formula where the
number of virtual appliances to deploy N is estimated as:

N =
St+1 − Yt

X

Case of Docker containers (Containers): We use the following formula where the number of virtual appliances to deploy
N is estimated as:

N =
St+1

X

Where St+1 is the estimated traffic at time t+1, Yt is the monitored traffic at time t, X is the maximum throughput supported
by a given application stack, about 600 requests per second in our case study (this value is obtained from benchmarks). The
functions respectively calculating the number of resources to provision for VMs and containers are different, because in
containers the number of resources calculate includes resources in use. We do it in relation to the Kubernate2 command which
allows us to scale the number of containers( For example, with command $ Kubectl scale —-replicas = 3 , if initially there
are 2 containers then Kubernate will only add 1 container).

4. PEAKFORECAST MIDDLEWARE
In the context of virtual infrastructures (cf. Figures 8 and 9), PeakForecast is aelastic middleware solution we developed

to automatically address the elasticity issues imposed by traffic surges not only by adding resources to absorb traffic surges,
but also to release these resources once the load decreases. PeakForecast therefore monitors the incoming traffic, makes
predictions on the volume of this traffic and adjust the size of the infrastructure according to these predictions. Adding more
resources mainly concerns instances of Virtual Machines (VMs) or Docker containers3 (Containers) hosting the presentation
layer and the business logic tier of the website, because they are usually considered as the bottleneck caused by traffic surges.
In particular, we use Fabric4, a Python library for streamlining the use of SSH, for operating the VMs deployment or the
replication containers. Once instances of VMs are deployed, the load balancer (here Nginx5) is automatically reconfigured to
consider the new instances made available.

In this section, we provide a detailed overview of our tool, PeakForecast, in a virtual web infrastructure (Figure 8 and 9).
PeakForecast is a distributed software system based on the SCA standard (see Figure 6). The Service Component Archi-
tecture (SCA) standard is a set of specifications for building distributed applications based on Service–Oriented Architectures
(SOA) and Component–Based Software Engineering (CBSE) principles [2]. We use the FraSCAti6 middleware platform,
which enables the development and the execution of distributed SOA applications based on SCA. To build an efficient and
scalable solution, we built PeakForecast with the Akka event-driven middleware framework.7 Akka is a toolkit for building
highly concurrent, distributed, and fault tolerant event–driven applications on the JVM. Akka implements a programming
model based on actors. The strength of Akka is its high performance: 50 million messages processed per second on a single
machine, and small memory footprint; 2.7 million actors per GB of heap.

As illustrated in Figure 6, PeakForecast is mainly composed of two components. The first component exposes a web ser-
vice to administrate the VMs or containers of the virtual web infrastructure. It contains four essential components Controller-
Software, ControllerVM/Container, ControllerKubectl and EventNotificationAlert. The component ControllerSoftware provides
services to install, uninstall, status, reconfig, stop, start, restart a component on one or more VMs. Here, one component may
be a server or an application. In case the service must be running on multiple VMs, the operation is performed by the actors
Worker”n” to operate in parallel and coordinated by the supervisor actor ControllerSoftware. The component ControllerVM/-
Container provides services to start, restart, pause, resume, clone, create, delete VMs and Containers. All these services are
applied to one or more VMs and Containers. The component ControllerKubectl provides services to replicate Containers. The
component EventNotificationAlert provides services to send emails, tweets and SMS notifications or to alert to administrators
of the virtual web infrastructure. The administrators can receive a notification message even if they are on the move to keep
being informed and up-to-date about the condition of virtual web infrastructure.

2http://kubernetes.io
3https://www.docker.com
4http://fabfile.org
5http://wiki.nginx.org
6http://frascati.ow2.org
7http://akka.io



Figure 6: Architecture of the PeakForecast Middleware.

The second component allows PeakForecast to monitor HTTP traffic, detecting traffic surges and reacting accordingly
by consuming the services provided by the first component. It contains two essential components: Monitor and CheckDDOS.
The component Monitor implements a MAPE-K loop [19], and is mainly composed of five actors: Collect, Learn, Analyse,
Decide, Act(Action), communicating with each others by exchanging messages (see Figure 7). The actor Collect collects
traffic information per time interval. The number of requests collected by the actor Collect are sent as a message to the
actor Analyse and actor Learn. The actor Analyse analyzes the number of requests to detect when we are facing a traffic
surge (see Section 2.1), or the prediction gives an estimate of upcoming traffic (see Section 2.2). It is within this actor that
we implemented the simple exponential smoothing formula. With this prediction of the upcoming traffic, PeakForecast
estimates the number of VMs or Containers to absorb the traffic surge (see Section 2.3). The actor Analyse sends the number
of VMs or Containers as a message to the actor Decide. Based on the latency of VMs in use, the actor Decide determines
the exact number of VM or container instances to deploy in order to absorb the traffic surge, verifies if the virtual web
infrastructure is facing a Distributed Deny of Service (DDoS), and then sends this number to the actor Act(Action), which
takes care of making available the requested VM or container instances, allowing the virtual web infrastructure to anticipate
the traffic surge ahead. The actor Learn allows calculation (learning process) to part of a historic request (e.g., 30 numbers of
requests received), to determine the best smoothing constant α and to send α as a message to the actor Analyse in order to
increase and maintain the reliability of prediction model. In order to manage the positive faults, the actor Learn which allows
us to part of a historical request (eg 30 numbers of requests received), to determine at each moment, the best smoothing
constant of the moment that minimizes the sum of the squares of the last third of the errors. Thus, the value of the smoothing
constant is dynamically updated in order to increase and maintain the reliability of prediction model.

The component CheckDDOS allows the component Monitor, to check if a server is under DDoS before adding resources
within a virtual web infrastructure. This architecture of PeakForecast (cf. Figure 6) is an architecture that can be reused
for any Cloud applications that can be horizontally scaled by spawning new replicas.

The monitoring algorithm of our autonomous system PeakForecast is implemented by the component Monitor, which
coordinates the activation of the various components of the architecture in order to quickly arrive at an optimal preference
decision. To provide this decision-making capacity, the monitoring algorithm uses active rules or ECA (Event-Condition-
Action) rules, widely studied in the field of active databases.



intervalTime
Represents the time interval the actor Collect will use to collect requests.
For example, every 30 seconds, 1 minute ...

intervalHistoryRequests
Represents the interval of the last analysis requests that the actor Learn
will use during the automatic learning process.

constantSmoothing
Represents the smoothing constant of the predictive model by the Simple
Exponential Smoothing method.

surgeCoefficientThreshold Represents the highest Cs, the more intense the traffic surge (cf. SubSection 2.1)
numberDetectedPeak Represents the number of detected traffic surges with an added VMs or Containers action.

numberRequestCurrent equal
numberRequestPrevious

Represents the number of request collected after an intervalTime time recorded in
the numberRequestCurrent variable. NumberRequestPrevious contains the previous
value of numberRequestCurrent. Initially they have the same value.

listNumberRequestBeforePeak
Represents the list containing the values of the number of requests collected
before the detected traffic peaks.

listNumberVMsUp Represents the list of VMs or Containers numbers added by the actor Act(action).
scaleUp Allows to trigger the action of adding the VMs or Containers.
scaleDown Allows to trigger the removal action of the VMs or Containers.

Table 6: List of variables.

Monitoring Algorithm 1 describes a control loop mechanism that runs as long as the virtual infrastructure is active. Line
3 (collect) corresponds to the collection of the number of requests per time interval (for example one second, 15 seconds, 30
seconds, 1 minute) of the virtual infrastructure in real time. Line 4 (learn) corresponds to the analysis (automatic learning
process) of the numbers of requests collected in order to improve the predictions or resource estimates needed to absorb the
peak of future traffic. Line 5 (anlyze) corresponds to the analysis of the number of requests as they are collected; When
an upcoming peak is detected, an estimate of the number of resources (VMs or Docker containers) needed to absorb the
upcoming traffic peak is returned. Line 6 (decision) corresponds to the decision of the exact number of resources (VMs
or Docker containers) to add to absorb the peak of traffic depending on the customer profile of the virtual infrastructure
and resources in use. Line 7 (action) corresponds to the execution of adding or removing a number of resources (VMs or
Docker containers). The functions collect, learn, analyze, decision, execute are described respectively in Algorithms 3, 4, 5,
6. Algorithm 3 describes a sequence of collects traffic information per time interval, save in the database, and which are
returned. Algorithm 4 describes a sequence that allows , to part of a historic request (e.g., 30 numbers of requests received),
to determine (learning process), the best smoothing constant α and and return it. Algorithm 5 describes a sequence that
corresponds to the analysis of the number of requests as they are collected; When an upcoming peak is detected, an estimate
of the number of resources (VMs or Docker containers) needed to absorb the upcoming traffic peak and return it. Algorithm
6 describes a sequence that corresponds to the decision of the exact number of resources (VMs or Docker containers) to add
to absorb the peak of traffic depending on the customer profile of the virtual infrastructure and resources in use and return it.

Figure 7: Coordination between PeakForecast Middleware’s components.



Algorithm 1 Supervision of the Autonomous System PeakForecast

Require: initializationvariables()
1: while infrastructureIsUp do
2: numberRequestCurrent← collect(intervalT ime)
3: constantSmoothing ← learn(intervalHistoryRequests)
4: numberVMEstimate← analyze(numberRequestCurrent, numberPreviousRequest, constantSmoothing)
5: numberVMEstimateF inal← decide(numberVMEstimate)
6: action(numberVMEstimateFinal)
7: numberRequestPrevious← numberRequestCurrent
8: end while

Algorithm 2 Variable Initialization Procedure

1: procedure initializationvariables()
2: intervalT ime← 30 . 30 secondes for example
3: intervalHistoryRequests← 100 . 100 requests for example
4: constantSmoothing ← 0.9 . 0.9 for example based on requests history
5: surgeCoefficientThreshold← 2
6: numberDetectedPeak ← 0
7: numberRequestCurrent = numberRequestPrevious
8: listNumberRequestBeforePeak ← NULL . empty list of number request detects before traffic peak
9: listNumberVMsUp← NULL . empty list of VMs add to absorb traffic peak

10: scaleUp← false
11: scaleDown← false
12: end procedure

Algorithm 3 Collection function of real-time request

1: function collect(intervalT ime)
2: Get numberRequest After intervalT ime
3: Save numberRequest in the database
4: return numberRequest
5: end function

Algorithm 4 Learning function on the number of requests collected

1: function learn(intervalHistoryRequests)
2: With the intervalHistoryRequests, calculate the best constantSmoothing of simple exponential smoothing method

for prediction
3: return constantSmoothing
4: end function

Algorithm 5 Function to analyze the number of requests collected in real time

1: function analyze(numberRequestCurrent, numberRequestPrevious, constantSmoothing)
2: surgeCoefficient← numberRequestCurrent/numberRequestPrevious
3: if surgeCoefficient ≥ surgeCoefficientThreshold then
4: numberDetectedPeak ← numberDetectedPeak + 1
5: listNumberRequestBeforePeak.add(numberRequestPrevious)
6: With the simple exponential smoothing prediction method and the parameters numberRequestCurrent,
constantSmoothing, calculate the numberRequestFuture

7: With the numberRequestFuture estimating the number of VMs numberVMEstimate requirements to absorb
traffic surge

8: scaleUp← true
9: return numberVMEstimate

10: end if
11: if listNumberRequestBeforePeak.isNotEmpty() then
12: if listNumberRequestBeforePeak.get(numberDetectedPeak) ≥ numberRequestCurrent then
13: numberVMUp← listNumberVMUp.get(numberDetectedPeak)
14: scaleDown← true
15: return numberVMUp
16: end if
17: end if
18: end function



Algorithm 6 Decision-making function regarding the number of VMs or Containers to be added or removed

1: function decide(numberVMEstimate)
2: if scaleDown = true then
3: return numberVMEstimateF inal
4: else
5: With latency VMs running, the IAAS customer profil, numberVMEstimate, determine the final number of VMs
numberVMEstimateF inal

6: return numberVMEstimateF inal
7: end if
8: end function

5. VALIDATION
As a matter of validation, the virtual web infrastructure (see Figures 8 and 9) has been developed.

Case of the VMs (cf. Figure 8): The physical machine uses Virtual Box8 as an hypervisor and has the following charac-
teristics: CORE i3 CPU 2.50GHz with 4 GB of RAM, and for each VM: CPU 1 GHz with 500 MB of RAM. A VM
front-end hosts the load balancer Nginx9 responsible for distributing incoming HTTP requests among the VMs hosting
the MediaWiki10 website (the business logic tier of the website). While another VM contains the MySQL load balancer
responsible for distributing SQL queries to the VMs hosting the databases (the data layer of the website). As illustrated
in Figure 8, MySQL Proxy 11 redirects read SQL queries to MySQL server master and slaves, while write queries are
processed by the MySQL server master before forwarding the master replica to slaves.

Case of the Containers (cf. Figure 9): The physical machine uses Kubernetes12 for orchestrating, managing Docker con-
tainers and has the following characteristics: CORE i3 CPU 2.50GHz with 4 GB of RAM, and for each Container: CPU
1 GHz with 500 MB of RAM. The block ”frontend-controller” which contains the container ”PeakForecastClient
NginxProxy”, allows to monitor HTTP traffic, detect traffic surges and react accordingly.

For the purpose of this validation, adding resources concerns instances of VMs or Containers containing MediaWiki,
because they are considered as the bottleneck in traffic surges. To perform our benchmark, we used the tool SIEGE13. SIEGE
can stress a single URL with a user-defined number of simulated users, or it can read many URLs into memory and stress
them simultaneously. The program reports the total number of hits recorded, bytes transferred, response time, concurrency,
and return status. Siege supports HTTP/1.0 and 1.1 protocols, the GET and POST directives, cookies, transaction logging, and
basic authentication.

Without PeakForecast: we use a single VM or Container (apache1) containing an instance of MediaWiki and thus treating
all HTTP requests sent by the Nginx load balancer. After some minutes, the web site becomes overloaded, slows down
and even becomes temporally unavailable.

With PeakForecast: In Figure 10(a), we also have a single VM (apache1) containing an instance of MediaWiki and thus
serving all HTTP requests sent by Nginx load balancer. PeakForecast quickly detects that the infrastructure is facing
a traffic surge, predicts the upcoming traffic, estimates the number of VMs required to absorb the traffic surge (2 VMs:
apache 2 & 3) and starts the process of provisioning these VMs. In Figure 10(b), PeakForecast installs MediaWiki
on VMs apache 2 & 3 (in approximately 10 seconds), then add the VMs in the configuration file of the Nginx load
balancer to make them visible to Nginx. Figure 10(c) reports treatments, such as requests sent by VMs apache 2 &

3, which explains the evolution of CPU and RAM in VM apache1. In Figure 10(d), PeakForecast removes the VMs
apache 2 & 3 once the traffic surge has been absorbed.

We also have a single container (apache1) containing MediaWiki and thus serving all HTTP requests sent by frontend-
controller. In Figure 11(b) PeakForecast quickly detects that the infrastructure is facing a traffic surge, predicts the
upcoming traffic, estimates the number of Containers required to absorb the traffic surge (2 Containers: apache 2 & 3)
and starts the process of provisioning these Containers by replication mediawiki-controller (in approximately 5 seconds).
Figure 11(c) reports treatments, such as requests sent by Containers apache 2 & 3, which explains the evolution of
CPU and RAM in container apache 1. In Figure 11(d), PeakForecast removes the Container apache 2 & 3 once the
traffic surge has been absorbed.

8https://www.virtualbox.org/wiki/Downloads
9http://nginx.org/en/download.html

10https://www.mediawiki.org/wiki/Download
11http://download.nust.na/pub6/mysql/downloads/mysql-proxy/index.html
12http://kubernetes.io
13http://www.joedog.org/siege-home



Figure 8: PeakForecast Infrastructure for VMs.



Figure 9: PeakForecast Infrastructure for Containers.



Figure 10: Benchmark 1 with PeakForecast VMs

Figure 11: Benchmark 2 with PeakForecast Containers



Figure 12: Auto-scaling simulation using 1998 FIFA World Cup trace with Platform Insights of Laura R. et
al [55]

Figure 13: Auto-scaling simulation using 1998 FIFA World Cup trace with PeakForecast

To evaluate the performance of the elasticity, a simulation has been carried out also on a real dataset the FIFA 1998
World Cup Access logs [20], were used to simulate the incoming load to the web site. The log files were summarized to
extract the number of requests arriving every 2 minutes. Figure 13 shows how resources are allocated during the period from
June 26 to July 4 by PeakForecast. It clearly shows that the base resource required is an instance and it auto-scaling
between 1 to 7 instance when the load increases or decreases. PeakForecast adjusts resource more appropriately, and hence
will result in better utilization, than does the purely reactive controller and Platform Insights of Laura R. et al [55] that not
incorporate an algorithm to detect change in workload mix.

6. CONCLUSIONS AND FUTURE WORK
In this paper, to response the following research questions: Is it possible to anticipate the effects of a traffic surge? If so,

is it possible to protect the targeted system from unavailability? we have presented an elastic distributed resource scaling
approach for IaaS cloud infrastructures that provide a medium-term resource demand prediction to absorb traffic surges before
under-provisioning, named PeakForecast(PF). From a trace of queries received in the last seconds, minutes or hours, PF: i)
Detecting Potential Traffic Surges, ii) After detecting the traffic surge, Forecasting the Upcoming Traffic by using a forecasting
model, iii) Estimating the number resources required to absorb the remaining traffic to come, iv) Auto-scaling resources by
quickly automatically adding resources to absorb traffic surges. We have evaluated our approach using MediaWiki and web
application traffic traces that were collected on the Japanese version of Wikipedia some days before and after the tsunami on
March 11th, 2011, in an interval where the traffic surge has been observed and a dataset acquired from the FIFA 1998 World
Cup web site. The experimental results confirm that our prototype elastic middleware solution, based on PF, can provide
instantaneous elasticity of resources during traffic surges.

As for future work, we planned: i) To give PF the possibility of quickly changing some VM parameters (e.g., memory,



CPU) to delay the peak of traffic before considering the deployment of additional VMs or Containers. ii) In real commercial
scenarios, allocating extra VMs or Containers will have to be paid for a whole hour. Thus, we should allow PF, based on
predictions, to consider the expected duration of the traffic surge in order to adjust the minimum number of VMs or Containers
that would maintain an acceptable QoS and minimize wasting of resources.

Appendices

Listing 1: Client Composite of the PeakForecast Middleware.
<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<composite xmlns="http ://www.osoa.org/xmlns/sca /1.0"

xmlns:wsdli="http ://www.w3.org /2004/08/ wsdl -instance"
name="peakforecast -ws-client"
targetNamespace="http :// frascati.ow2.org/peakforecast -ws">

<service name="r" promote="monitor/r">
<interface.java interface="java.lang.Runnable"/>

</service >
<component name="monitor">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.Monitor"/>

<service name="r">
<interface.java interface="java.lang.Runnable"/>

</service >
<reference name="controllerSoftwareService">

<binding.ws wsdli:wsdlLocation="http ://192.168.1.108:9000/
ControllerSoftwareService?wsdl"

wsdlElement="http ://api.peakforecast.fabric.
akka.frascati.ow2.org/#wsdl.port(
ControllerSoftwareService/
ControllerSoftwareServicePort)"

/>
</reference >
<reference name="controllerVMService">

<binding.ws wsdli:wsdlLocation="http ://192.168.1.108:9000/
ControllerVMService?wsdl"

wsdlElement="http ://api.peakforecast.fabric.
akka.frascati.ow2.org/#wsdl.port(
ControllerVMService/ControllerVMServicePort
)"

/>
</reference >
<reference name="controllerKubectlService">

<binding.ws wsdli:wsdlLocation="http ://192.168.1.108:9000/
ControllerKubectlService?wsdl"

wsdlElement="http ://api.peakforecast.fabric.
akka.frascati.ow2.org/#wsdl.port(
ControllerKubectlService/
ControllerKubectlServicePort)"

/>
</reference >
<reference name="eventNotificationAlertService">

<binding.ws wsdli:wsdlLocation="http ://192.168.1.108:9000/
EventNotificationAlertService?wsdl"

wsdlElement="http ://api.peakforecast.fabric.
akka.frascati.ow2.org/#wsdl.port(
EventNotificationAlertService/
EventNotificationAlertServicePort)"

/>
</reference >

</component >
<component name="shell">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.ShellImpl"/>

</component >
<wire source="monitor/sh" target="shell/ShellService"/>

</composite >



Listing 2: Server Composite of the PeakForecast Middleware.
<?xml version ="1.0" encoding ="UTF -8"?>
<composite xmlns="http ://www.osoa.org/xmlns/sca /1.0"

xmlns:wsdli="http ://www.w3.org /2004/08/ wsdl -instance"
targetNamespace="http :// frascati.ow2.org/peakforecast -ws"
name="peakforecast -ws-server">

<!-- SCA binding (Web service) -->
<service name="controllersoftwareservice" promote="controllersoftware/

controllersoftwareservice">
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.api

.ControllerSoftwareService" />
<binding.ws uri="http ://192.168.1.108:9000/ ControllerSoftwareService"/>

</service >
<service name="controllervmservice" promote="controllervm/controllervmservice"

>
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.api

.ControllerVMService" />
<binding.ws uri="http ://192.168.1.108:9000/ ControllerVMService"/>

</service >
<service name="controllerkubectlservice" promote="controllerkubectl/

controllerkubectlservice">
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.api

.ControllerKubectlService" />
<binding.ws uri="http ://192.168.1.108:9000/ ControllerKubectlService"/>

</service >
<service name="eventnotificationalertservice" promote="eventnotificationalert/

eventnotificationalertservice">
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.api

.EventNotificationAlertService" />
<binding.ws uri="http ://192.168.1.108:9000/ EventNotificationAlertService

"/>
</service >

<!-- SCA Component -->
<component name="controllersoftware">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.ControllerSoftwareImpl"/>

<service name="controllersoftwareservice">
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.

api.ControllerSoftwareService" />
</service >

</component >
<component name="controllervm">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.ControllerVMImpl"/>

<service name="controllervmservice">
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.

api.ControllerVMService" />
</service >

</component >
<component name="controllerkubectl">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.ControllerKubectlImpl"/>

<service name="controllerkubectlservice">
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.

api.ControllerKubectlService" />
</service >

</component >
<component name="eventnotificationalert">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.EventNotificationAlertImpl"/>

<service name="eventnotificationalertservice">
<interface.java interface="org.ow2.frascati.akka.fabric.peakforecast.

api.EventNotificationAlertService" />
</service >

</component >

<component name="shell">
<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.

lib.ShellImpl"/>
</component >



<component name="mediawiki">
<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.

lib.MediaWiki"/>
</component >
<component name="apache">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.Apache"/>

</component >
<component name="php">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.PHP"/>

</component >
<component name="mysql">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.MySql"/>

</component >
<component name="nginx">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.Nginx"/>

</component >
<component name="proximysql">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.ProxyMysql"/>

</component >

<component name="twitter">
<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.

lib.TwitterImpl"/>
</component >
<component name="sms">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.SMSImpl"/>

</component >
<component name="email">

<implementation.java class="org.ow2.frascati.akka.fabric.peakforecast.
lib.EmailImpl"/>

</component >

<!-- SCA wire (local) -->
<wire source="mediawiki/sh" target="shell/ShellService"/>
<wire source="apache/sh" target="shell/ShellService"/>
<wire source="php/sh" target="shell/ShellService"/>
<wire source="mysql/sh" target="shell/ShellService"/>
<wire source="nginx/sh" target="shell/ShellService"/>
<wire source="proximysql/sh" target="shell/ShellService"/>

<wire source="controllersoftware/cmsMediawiki" target="mediawiki/
SoftwareService"/>

<wire source="controllersoftware/serverApache" target="apache/SoftwareService"
/>

<wire source="controllersoftware/libphp" target="php/SoftwareService"/>
<wire source="controllersoftware/serverMysql" target="mysql/SoftwareService"/>
<wire source="controllersoftware/loadbalancerNginx" target="nginx/

SoftwareService"/>
<wire source="controllersoftware/loadbalancerProximysql" target="proximysql/

SoftwareService"/>
<wire source="controllersoftware/sh" target="shell/ShellService"/>
<wire source="controllersoftware/event" target="eventnotificationalert/

eventnotificationalertservice"/>

<wire source="controllervm/sh" target="shell/ShellService"/>
<wire source="controllervm/event" target="eventnotificationalert/

eventnotificationalertservice"/>

<wire source="controllerkubectl/sh" target="shell/ShellService"/>
<wire source="controllerkubectl/event" target="eventnotificationalert/

eventnotificationalertservice"/>

<wire source="eventnotificationalert/twitter" target="twitter/TwitterService"
/>

<wire source="eventnotificationalert/sms" target="sms/SMSService"/>
<wire source="eventnotificationalert/email" target="email/EmailService"/>



</composite >
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